<ul id="ikmau"><center id="ikmau"></center></ul>
  • <strike id="ikmau"></strike>
  • <ul id="ikmau"><sup id="ikmau"></sup></ul>
    <abbr id="ikmau"></abbr>
  • 珠海市2013年中考數(shù)學(xué)試卷解析

    編輯: 逍遙路 關(guān)鍵詞: 九年級 來源: 高中學(xué)習(xí)網(wǎng)
    2013年廣東省珠海市中考數(shù)學(xué)試卷
     
    一、(本大題5小題,每小題3分,共15分)在每小題列出的四個選項中,只有一個是正確的,請把答題卡上對應(yīng)題目所選的選項涂黑
    1.(3分)(2013?珠海)實數(shù)4的算術(shù)平方根是(  )
     A.?2B.2C.±2 D.±4
     
    2.(3分)(2013?珠海)如圖兩平行線a、b被直線l所截,且∠1=60°,則∠2的度數(shù)為(  )
     A.30°B.45°C.60°D.120°
     
    3.(3分)(2013?珠海)點(3,2)關(guān)于x軸的對稱點為(  )
      A.(3,?2)B.(?3,2)C.(?3,?2)D.(2,?3)
     
    4.(3分)(2013?珠海)已知一元二次方程:①x2+2x+3=0,②x2?2x?3=0.下列說法正確的是(  )
     A.①②都有實數(shù)解B.①無實數(shù)解,②有實數(shù)解
     C.①有實數(shù)解,②無實數(shù)解D.①②都無實數(shù)解
     
    5.(3分)(2013?珠海 )如圖,?ABCD的頂點A、B、D在⊙O上,頂點C在⊙O的直徑BE上,∠ADC=54°,連接AE,則∠AEB的度數(shù)為(  )
     A.36°B.46°C.27°D.63°
     
    二、題(本大題5小題,每小題4分,共20分)請將行李各題的正確答案填寫在答題卡相應(yīng)的位置上。
    6.(4分)(2013?珠海)使式子 有意義的x的取值范圍是 _________ .
     
    7.(4分)(2013?珠海)已知,函數(shù)y=3x的圖象經(jīng)過點A(?1,y1),點B(?2,y2),則y1 _________ y2(填“>”“<”或“=”)
     
    8.(4分)(2013?珠海)若圓錐的母線長為5cm,地面半徑為3cm,則它的測面展開圖的面積為 _________ cm2(結(jié)果保留π)
     
    9.(4分)(2013?珠海)已知a、b滿足a+b=3,ab=2,則a2+b2= _________ .
     
    10.(4分)(2013?珠海)如圖,正方形ABCD的邊長為1,順次連接正方形ABCD四邊的中點得到第一個正方形A1B1C1D1,由順次連接正方形A1B1C1D1四邊的中點得到第二個正方形A2B2C2D2…,以此類推,則第六個正方形A6B6C6D6周長是 _________ .
     
    三、解答題(一)(本大題5小題,每小題6分,共30 分)
    11.(6分)(2013?珠海)計算: ?( )0+
     
    12.(6分)(2013?珠海)解方程: .
     
    13.(6分)(2013?珠海)某初中學(xué)校對全校學(xué)生進行一次“勤洗手”的問卷調(diào)查,學(xué)校七、八、九三個年級學(xué)生人數(shù)分別為600人、700人、600人,經(jīng)過數(shù)據(jù)整理將全校的“勤洗手”調(diào)查數(shù)據(jù)繪制成統(tǒng)計圖.
    (1)根據(jù)統(tǒng)計圖,計算八年級“勤洗手”學(xué)生人數(shù),并補全下列兩幅統(tǒng)計圖.
    (2)通過計算說明那個年級“勤洗手”學(xué)生人數(shù)占本年級學(xué)生人數(shù)的比例最大?
     
    14.(6分)(2013?珠海)如圖,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;
    求證:BC=DC.
     
    15.(6分)(2013?珠海)某漁船出海捕魚,2010年平均每次捕魚量為10噸,2014年平均每次捕魚量為8.1噸,求2010年?2014年每年平均每次捕魚量的年平均下降率.
     
    四、解答題(二))(本大題4小題,每小題7分,共28分)
    16.(7分)(2013?珠海)一測量愛好者,在海邊測量位于正東方向的小島高度AC,如圖所示,他先在點B測得山頂點A的仰角為30°,然后向正東方向前行62米,到達D點,在測得山頂點A的仰角為60°(B、C、D三點在同一水平面上,且測量儀的高度忽略不計).求小島高度AC(結(jié)果精確的1米,參考數(shù)值: )
     
    17.(7分)(2013?珠海)如圖,⊙O經(jīng)過菱形ABCD的三個頂點A、C、D,且與AB相切于點A
    (1)求證:BC為⊙O的切線;
    (2)求∠B的度數(shù).
     
    18.(7分)(2013?珠海)把分別標(biāo)有數(shù)字2、3、4、5的四個小球放入A袋內(nèi),把分別標(biāo)有數(shù)字 、 、 、 、 的五個小球放入B袋內(nèi),所有小球的形狀、大小、質(zhì)地完全相同,A、B兩個袋子不透明、
    (1)小明分別從A、B兩個袋子中各摸出一個小球,求這兩個小球上的數(shù)字互為倒數(shù)的概率;
    (2)當(dāng)B袋中標(biāo)有 的小球上的數(shù)字變?yōu)椤________ 時(填寫所有結(jié)果),(1)中的概率為 .
     
    19.(7分)(2013?珠海)已知,在平面直角坐標(biāo)系xOy中,點A在x軸負(fù)半軸上,點B在y軸正半軸上,OA=OB,函數(shù)y= 的圖象與線段AB交于M點,且AM=BM.
    (1)求點M的坐標(biāo);
    (2)求直線AB的解析式.
     
    五、解答題(三)(本大題3小題,每小題9分,共27分)
    20.(9分)(2013?珠海)下面材料,并解答問題.
    材料:將分式 拆分成一個整式與一個分式(分子為整數(shù))的和的形式.
    解:由分母為?x2+1,可設(shè)?x4?x2+3=(?x2+1)(x2+a)+b
    則?x4?x2+3=(?x2+1)(x2+a)+b=?x4?ax2+x2+a+b=?x4?(a?1)x2+(a+b)
    ∵對應(yīng)任意x,上述等式均成立,∴ ,∴a=2,b=1
    ∴ = =x2+2+
    這樣,分式 被拆分成了一個整式x2+2與一個分式 的和.
    解答:
    (1)將分式 拆分成一個整式與一個分式(分子為整數(shù))的和的形式.
    (2)試說明 的最小值為8.
     
    21.(9分)(2013?珠海)如圖,在Rt△ABC中,∠C=90°,點P為AC邊上的一點,將線段AP繞點A順時針方向旋轉(zhuǎn)(點P對應(yīng)點P′),當(dāng)AP旋轉(zhuǎn)至AP′⊥AB時,點B、P、P′恰好在同一直線上,此時作P′E⊥AC于點E.
    (1)求證:∠CBP=∠ABP;
    (2)求證:AE=CP;
    (3)當(dāng) ,BP′=5 時,求線段AB的長.
     
    22.(9分)(2013?珠海)如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在y軸和x軸的正半軸上,且長分別為m、4m(m>0),D為邊AB的中點,一拋物線l經(jīng)過點A、D及點M(?1,?1?m).
    (1)求拋物線l的解析式(用含m的式子表示);
    (2)把△OAD沿直線OD折疊后點A落在點A′處,連接OA′并延長與線段BC的延長線交于點E,若拋物線l與線段CE相交,求實數(shù)m的取值范圍;
    (3)在滿足(2)的條件下,求出拋物線l頂點P到達最高位置時的坐標(biāo).
    2013年廣東省珠海市中考數(shù)學(xué)試卷
    參考答案與試題解析
     
    一、(本大題5小題,每小題3分,共15分)在每小題列出的四個選項中,只有一個是正確的,請把答題卡上對應(yīng)題目所選的選項涂黑
    1.(3分)(2013?珠海)實數(shù)4的算術(shù)平方根是(  )
     A.?2B.2C.±2D.±4
    考點:算術(shù)平方根.
    分析:根據(jù)算術(shù)平方根的定義解答即可.
    解答: 解:∵22=4,
    ∴4的算術(shù)平方根是2,
    即 =2.
    故選B.
    點評:本題考查了算術(shù)平方根的定義,是基礎(chǔ)題,熟記概念是解題的關(guān)鍵.
     
    2.(3分)(2013?珠海)如圖兩平行線a、b被直線l所截,且∠1=60°,則∠2的度數(shù)為(  )
     A.30°B.45°C.60°D.120°
    考點:平行線的性質(zhì).
    分析:由a∥b,根據(jù)兩直線平行,同位角相等,即可求得∠3=∠1=60°,又由對頂角相等,即可求得答案.
    解答:解:∵a∥b,
    ∴∠3=∠1=60°,
    ∴∠2=∠3=60°.
    故選C.
    點評:此題考查了平行線的性質(zhì).此題比較簡單,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
     
    3.(3分)(2013?珠海)點(3,2)關(guān)于x軸的對稱點為(  )
     A.(3,?2)B.(?3,2)C.(?3,?2)D.(2,?3)
    考點:關(guān)于x軸、y軸對稱的點的坐標(biāo).
    分析:根據(jù)關(guān)于x軸對稱點的坐標(biāo)特點:橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù)可直接寫出答案.
    解答:解:點(3,2)關(guān)于x軸的對稱點為(3,?2),
    故選:A.[來源:學(xué)科網(wǎng)]
    點評:此題主要考查了關(guān)于x軸對稱點的坐標(biāo)特點,關(guān)鍵是掌握點的坐標(biāo)的變化規(guī)律.
     
    4.(3分)(2013?珠海)已知一元二次方程:①x2+2x+3=0,②x2?2x?3=0.下列說法正確的是(  )
     A.①②都有實數(shù)解B.①無實數(shù)解,②有實數(shù)解
     C.①有實數(shù)解,②無實數(shù)解D.①②都無實數(shù)解
    考點:根的判別式.
    分析:求出①、②的判別式,根據(jù):
    ①當(dāng)△>0時,方程有兩個不相等的兩個實數(shù)根;
    ②當(dāng)△=0時,方程有兩個相等的兩個實數(shù)根;
    ③當(dāng)△<0時,方程無實數(shù)根.
    即可得出答案.
    解答:解:方程①的判別式△=4?12=?8,則①沒有實數(shù)解;
    方程②的判別式△=4+12=20,則②有兩個實數(shù)解.
    故選B.
    點評:本題考查了根的判別式,解答本題的關(guān)鍵是掌握跟的判別式與方程根的關(guān)系.
     
    5.(3分)(2013?珠海)如圖,?ABCD的頂點A、B、D在⊙O上,頂點C在⊙O的直徑BE上,∠ADC=54°,連接AE,則∠AEB的度數(shù)為(  )x k b 1 . c o m
     A.36°B.46°C.27°D.63°
    考點:圓周角定理;平行四邊形的性質(zhì).
    分析:根據(jù)BE是直徑可得∠BAE=90°,然后在?ABCD中∠ADC=54°,可得∠B=54°,繼而可求得∠AEB的度數(shù).
    解答:解:∵四邊形ABCD是平行四邊形,∠ADC=54°,
    ∴∠B=∠ADC=54°,
    ∵BE為⊙O的直徑,
    ∴∠BAE=90°,
    ∴∠AEB=90°?∠B=90°?54°=36°.
    故選A.
    點評:本題考查了圓周角定理及平行四邊形的性質(zhì),解答本題的關(guān)鍵是根據(jù)平行四邊形的性質(zhì)得出∠B=∠ADC.
     
    二、題(本大題5小題,每小題4分,共20分)請將行李各題的正確答案填寫在答題卡相應(yīng)的位置上。
    6.(4分)(2013?珠海)使式子 有意義的x的取值范圍是 x≥?  .
    考點:二次根式有意義的條件.
    分析:二次根式的被開方數(shù)是非負(fù)數(shù).
    解答:解:根據(jù)題意,得
    2x+1≥0,
    解得,x≥? .
    故答案是:x≥? .
    點評:考查了二次根式的意義和性質(zhì).概念:式子 (a≥0)叫二次根式.性質(zhì):二次根式中的被開方數(shù)必須是非負(fù)數(shù),否則二次根式無意義.
     
    7.(4分)(2013?珠海)已知,函數(shù)y=3x的圖象經(jīng)過點A(?1,y1),點B(?2,y2),則y1 > y2(填“>”“<”或“=”)
    考點:一次函數(shù)圖象上點的坐標(biāo)特征.
    分析:分別把點A(?1,y1),點B(?2,y2)代入函數(shù)y=3x,求出點y1,y2的值,并比較出其大小即可.
    解答:解:∵點A(?1,y1),點B(?2,y2)是函數(shù)y=3x上的點,
    ∴y1=?3,y2=?6,
    ∵?3>?6,
    ∴y1>y2.
    故答案為:>.
    點評:本題考查的是一次函數(shù)圖象上點的坐標(biāo)特點,即一次函數(shù)圖象上各點的坐標(biāo)一定適合此函數(shù)的解析式.
     
    8.(4分)(2013?珠海)若圓錐的母線長為5cm,地面半徑為3cm,則它的測面展開圖的面積為 15π cm2(結(jié)果保留π)
    考點:圓錐的計算.
    專題:.
    分析:先計算出圓錐底面圓的周長2π×3,再根據(jù)圓錐的側(cè)面展開圖為扇形,扇形的弧長等于圓錐底面圓的周長,扇形的半徑等于圓錐的母線長,然后根據(jù)扇形的面積公式計算即可.
    解答:解:圓錐的測面展開圖的面積= ×2π×3×5=15π(cm2).
    故答案為15π.
    點評:本題考查了圓錐的計算:圓錐的側(cè)面展開圖為扇形,扇形的弧長等于圓錐底面圓的周長,扇形的半徑等于圓錐的母線長.也考查了扇形的面積公式.
     
    9.(4分)(2013?珠海)已知a、b滿足a+b=3,ab=2,則a2+b2= 5 .
    考點:完全平方公式.
    專題:.
    分析:將a+b=3兩邊平方,利用完全平方公式化簡,將ab的值代入計算,即可求出所求式子的值.
    解答:解:將a+b=3兩邊平方得:(a+b)2=a2+2ab+b2=9,
    把ab=2代入得:a2+4+b2=9,
    則a2+b2=5.
    故答案為:5.
    點評:此題考查了完全平方公式,熟練掌握完全平方公式是解本題的關(guān)鍵.
     
    10.(4分)(2013?珠海)如圖,正方形ABCD的邊長為1,順次連接正方形ABCD四邊的中點得到第一個正方形A1B1C1D1,由順次連接正方形A1B1C1D1四邊的中點得到第二個正方形A2B2C2D2…,以此類推,則第六個正方形A6B6C6D6周長是   .
    考點:中點四邊形.
    專題:規(guī)律型.
    分析:根據(jù)題意,利 用中位線定理可證明順次連接正方形ABCD四邊中點得正方形A1B1C1D1的面積為正方形ABCD面積的一半,根據(jù)面積關(guān)系可得周長關(guān)系,以此類推可得正方形A6B6C6D6 的周長.
    解答:解:順次連接正方形ABCD四邊的中點得正方形A1B1C1D1,則得正方形A1B1C1D1的面積為正方形ABCD面積的一半,即 ,則周長是原來的 ;
    順次連接正方形A1B1C1D1中點得正方形A2B2C2D2,則正方形A2B2C2D2的面積為正方形A1B1C1D1面積的一半,即 ,則周長是原 來的 ;
    順次連接正方形A2B2C2D2得正方形A3B3C3D3,則正方形A3B3C3D3的面積為正方形A2B2C2D2面積的一半,即 ,則周長是原來的 ;
    順次連接正方形A3B3C3D3中點得正方形A4B4C4D4,則正方形A4B4C4D4的面積為正方形A3B3C3D3面積的一半 ,則周長是原來的 ;

    以此類推:第六個正方形A6B6C6D6周長是原來的 ,
    ∵正方形ABCD的邊長為1,
    ∴周長為4,
    ∴第六個正方形A6B6C6D6周長是 .
    故答案為: .
    點評:本題考查了利用了三角形的中位線的性質(zhì),相似圖形的面積比等于相似比的平方的性質(zhì).進而得到周長關(guān)系.
     
    三、解答題(一)(本大題5小題,每小題6分,共30分)
    11.(6分)(2013?珠海)計算: ?( )0+
    考點:實數(shù)的運算;零指數(shù)冪;負(fù)整數(shù)指數(shù)冪.
    專題:計算題.
    分析:根據(jù)零指數(shù)冪與負(fù)整數(shù)指數(shù)冪得到原式=3?1+ ? ,然后化為同分母后進行加減運算.
    解答:解:原式=3?1+ ?
    = .
    點評:本題考查了實數(shù)的運算:先算乘方或開方,再算乘除,然后進行加減運算;有括號先算括號.也考查了零指數(shù)冪與負(fù)整數(shù)指數(shù)冪.
     
    12.(6分)(2013?珠海)解方程: .
    考點:解分式方程.
    專題:計算題.
    分析:分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.
    解答:解:去分母得:x(x+2)?1=x2?4,
    去括號得:x2+2x?1=x2?4,
    解得:x=? ,
    經(jīng)檢驗x=? 是分式方程的解.
    點評:此題考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.解分式方程一定注意要驗根.
     
    13.(6分)(2013?珠海)某初中學(xué)校對全校學(xué)生進行一次“勤洗手”的問卷調(diào)查,學(xué)校七、八、九三個年級學(xué)生人數(shù)分別為600人、700人、600人,經(jīng)過數(shù)據(jù)整理將全校的“勤洗手”調(diào)查數(shù)據(jù)繪制成統(tǒng)計圖.
    (1)根據(jù)統(tǒng)計圖,計算八年級“勤洗手”學(xué)生人數(shù),并補全下列兩幅統(tǒng)計圖.
    (2)通過計算說明那個年級“勤洗手”學(xué)生人數(shù)占本年級學(xué)生人數(shù)的比例最大?
    考點:條形統(tǒng)計圖;扇形統(tǒng)計圖.
    分析:(1)由七年級“勤洗手”的人數(shù)除以所占的百分比,求出全校“勤洗手”的人數(shù),進而求出八年級“勤洗手”的人數(shù),補全條形統(tǒng)計圖;求出九年級“勤洗手”人數(shù)所占的百分比,補全扇形統(tǒng)計圖即可;
    (2)求出三個年級“勤洗手”人數(shù)所占的百分比,比較大小即可.
    解答:解:(1)根據(jù)題意得:300÷25%=1200(人),
    則八年級“勤洗手”人數(shù)為1200×35%=420(人),
    (2)七年級“勤洗手”學(xué)生人數(shù)占本年級學(xué)生人數(shù)的比例為 ×100%=50%;
    八年級“勤洗手”學(xué)生人數(shù)占本年級學(xué)生人數(shù)的比例為 ×100%=60%;
    九年級“勤洗手”學(xué)生人數(shù)占本年級學(xué)生人數(shù)的比例為 ×100%=80%,
    則九年級“勤洗手”學(xué)生人數(shù)占本年級學(xué)生人數(shù)的比例最大.
    點評:此題考查了條形統(tǒng)計圖,以及扇形統(tǒng)計圖,弄清題意是解本題的關(guān)鍵.
     
    14.(6分)(2013?珠海)如圖,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;
    求證:BC=DC.
    考點:全等三角形的判定與性質(zhì).
    專題:證明題.
    分析:先求出∠ACB=∠ECD,再利用“角邊角”證明△ABC和△EDC全等,然后根據(jù)全等三角形對應(yīng)邊相等證明即可.
    解答:證明:∵∠BCE=∠DCA,
    ∴∠BCE+∠ACE=∠DCA+∠ACE,
    即∠ACB=∠ECD,
    在△ABC和△EDC中, ,
    ∴△ABC≌△EDC(ASA),
    ∴BC=DC.
    點評:本題考查了全等三角形的判定與性質(zhì),求出相等的角∠ACB=∠ECD是解題的關(guān)鍵,也是本題的難點.
     
    15.(6分)(2013?珠海)某漁船出海捕魚,2010年平均每次捕魚量為10噸,2014年平均每次捕魚量為8.1噸,求2010年?2014年每年平均每次捕魚量的年平均下降率.
    考點:一元二次方程的應(yīng)用.
    專題:增長率問題.
    分析:解答此題利用的數(shù)量關(guān)系是:2010年平均每次捕魚量×(1?每次降價的百分率)2=2014年平均每次捕魚量,設(shè)出未知數(shù),列方程解答即可.
    解答:解:設(shè)2010年?2014年每年平均每次捕魚量的年平均下降率x,根據(jù)題意列方程得,
    10×(1?x)2=8.1,
    解得x1=0.1,x2=?1.9(不合題意,舍去).
    答:2010年?2014年每年平均每次捕魚量的年平均下降率為 10%.
    點評:本題考查的下降的百分率也就是增長率問題,兩年前是10噸,下降后現(xiàn)在是8.1噸,求每年的下降的百分率,可列式求解.
     
    四、解答題(二))(本大題4小題,每小題7分,共28分)
    16.(7分)(2013?珠海)一測量愛好者,在海邊測量位于正東方向的小島高度AC,如圖所示,他先在點B測得山頂點A的仰角為30°,然后向正東方向前行62米,到達D點,在測得山頂點A的仰角為60°(B、C、D三點在同一水平面上,且測量儀的高度忽略不計).求小島高度AC(結(jié)果精確的1米,參考數(shù)值: )
    考點:解直角三角形的應(yīng)用-仰角俯角問題.
    分析:首先利用三角形的外角的性質(zhì)求得∠BAD的度數(shù),得到AD的長度,然后在直角△ADC中,利用三角函數(shù)即可求解.
    解答:解:∵∠ADC=∠B+∠BAD,
    ∴∠BAD=∠ADC?∠B=60°?30°=30°,
    ∴∠B=∠BAD,
    ∴AD=BD=62(米).
    在直角△ACD中,AC=AD?sin∠ADC=62× =31 ≈31×1.7=52.7≈53(米).
    答:小島的高度是53米.
    點評:本題考查仰角的定義,要求學(xué)生能借助仰角構(gòu)造直角三角形并解直角三角形.
     
    17.(7分)(2013?珠海)如圖,⊙O經(jīng)過菱形ABCD的三個頂點A、C、D,且與AB相切于點A
    (1)求證:BC為⊙O的切線;
    (2)求∠B的度數(shù).
    考點:切線的判定與性質(zhì);菱形的性質(zhì).
    分析:(1)連結(jié)OA、OB、OC、BD,根據(jù)切線的性質(zhì)得OA⊥AB,即∠OAB=90°,再根據(jù)菱形的性質(zhì)得BA=BC,然后根據(jù)“SSS”可判斷△ABC≌△CBO,則∠BOC=∠OAC=90°,于是可根據(jù)切線的判定方法即可得到結(jié)論;
    (2)由△ABC≌△CBO得∠AOB=∠COB,則∠AOB=∠COB,由于菱形的對角線平分對角,所以點O在BD上,利用三角形外角性質(zhì)有∠BOC=∠ODC+∠OCD,則∠BOC=2∠ODC,
    由于CB=CD,則∠OBC=∠ODC,所以∠BOC=2∠OBC,根據(jù)∠BOC+∠OBC=90°可計算出∠OBC=30°,然后利用∠ABC=2∠OBC計算即可.
    解答:(1)證明:連結(jié)OA、OB、OC、BD,如圖,
    ∵AB與⊙切于A點,
    ∴OA⊥AB,即∠OAB=90°,
    ∵四邊形ABCD為菱形,
    ∴BA=BC,
    在△ABC和△CBO中

    ∴△ABC≌△CBO,
    ∴∠BOC=∠OAC=90°,
    ∴OC⊥BC,
    ∴BC為⊙O的切線;
    (2)解:∵△ABC≌△CBO,
    ∴∠AOB=∠COB,
    ∵四邊形ABCD為菱形,
    ∴BD平分∠ABC,CB=CD,
    ∴點O在BD上,
    ∵∠BOC=∠ODC+∠OCD,
    而OD=OC,
    ∴∠ODC=∠OCD,
    ∴∠BOC=2∠ODC,
    而CB=CD,
    ∴∠OBC=∠ODC,
    ∴∠BOC=2∠OBC,
    ∵∠BOC+∠OBC=90°,
    ∴∠OBC=30°,
    ∴∠ABC=2∠OBC=60°.
    點評:本題考查了切線的判定與性質(zhì):過半徑的外端點與半徑垂直的直線為圓的切線;圓的切線垂直于過切點的半徑.也考查了全等三角形相似的判定與性質(zhì)以及菱形的性質(zhì).
     
    18.(7分)(2013?珠海)把分別標(biāo)有數(shù)字2、3、4、5的四個小球放入A袋內(nèi),把 分別標(biāo)有數(shù)字 、 、 、 、 的五個小球放入B袋內(nèi),所有小球的形狀、大小、質(zhì)地完全相同,A、B兩個袋子不透明、
    (1)小明分別從A、B兩個袋子中各摸出一個小球,求這兩個小球上的數(shù)字互為倒數(shù)的概率;
    (2)當(dāng)B袋中標(biāo)有 的小球上的數(shù)字變?yōu)椤?、 、 、  時(填寫所有結(jié)果),(1)中的概率為 .
    考點:列表法與樹狀圖法.
    分析:(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與這兩個小球上的數(shù)字互為倒數(shù)的情況,再利用概率公式即可求得答案;
    (2)由概率為 ,可得這兩個小球上的數(shù)字互為倒數(shù)的有5種情況,繼而可求得答案.
    解答:解:(1)畫樹狀圖得:
    ∵共有20種等可能的結(jié)果,這兩個小球上的數(shù)字互為倒數(shù)的有4種情況,
    ∴這兩個小球上的數(shù)字互為倒數(shù)的概率為: = ;
    (2)∵當(dāng)B袋中標(biāo)有 的小球上的數(shù)字變?yōu)?、 、 、 時(填寫所有結(jié)果),
    ∴這兩個小球上的數(shù)字互為倒數(shù)的有5種情況,
    ∴這兩個小球上的數(shù)字互為倒數(shù)的概率為: = .
    故答案為: 、 、 、 .
    點評:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.
     
    19.(7分)(2013?珠海)已知,在平面直角坐標(biāo)系xOy中,點A在x軸負(fù)半軸上,點B在y軸正半軸上,OA=OB,函數(shù)y= 的圖象與線段AB交于M點,且AM=BM.
    (1)求點M的坐標(biāo);
    (2)求直線AB的解析式.
    考點:反比例函數(shù)與一次函數(shù)的交點問題.
    專題:計算題.
    分析:(1)過點M作MC⊥x軸,MD⊥y軸,根據(jù)M為AB的中點,MC∥OB,MD∥OA,利用平行線分線段成比例得到點C和點D分別為OA與OB的中點,從而得到MC=MD,設(shè)出點M的坐標(biāo)代入反比例函數(shù)解析式中,求出a的值即可得到點M的坐標(biāo);
    (2)根據(jù)(1)中求出的點M的坐標(biāo)得到MC與MD的長,從而求出OA與OB的長,得到點A與點B的坐標(biāo),設(shè)出一次函數(shù)的解析式,把點A與點B的坐標(biāo)分別代入解析式中求出k與b的值,確定出直線AB的表達式.
    解答:解:(1)過點M作MC⊥x軸,MD⊥y軸,
    ∵AM=BM,
    ∴點M為AB的中點,
    ∵MC⊥x軸,MD⊥y軸,
    ∴MC∥OB,MD∥OA,
    ∴點C和點D分別為OA與OB的中點,
    ∴MC=MD,
    則點M的坐標(biāo)可以表示為(?a,a),
    把M(?a,a)代入函數(shù)y= 中,
    解得a=2 ,
    則點M的坐標(biāo)為(?2 ,2 );
    (2)∵則點M的坐標(biāo)為(?2 ,2 ),
    ∴MC=2 ,MD=2 ,
    ∴OA=OB=2MC=4 ,
    ∴A(?4 ,0),B(0,4 ),
    設(shè)直線AB的解析式為y=kx+b,
    把點A(?4 ,0)和B(0,4 )分別代入y=kx+b中得 ,
    解得: .
    則直線AB的解析式為y=x+4 .
    點評:此題考查了反比例函數(shù)與一次函數(shù)的交點問題,平行線分線段成比例,以及中位線定理,用待定系數(shù)法確定函數(shù)的解析式,是常用的一種解題方法.同學(xué) 們要熟練掌握這種方法.
     
    五、解答題(三)(本大題3小題,每小題9分,共27分)
    20.(9分)(2013?珠海)下面材料,并解答問題.
    材料:將分式 拆分成一個整式與一個分式(分子為整數(shù))的和的形式.
    解:由分母為?x2+1,可設(shè)?x4?x2+3=(?x2+1)(x2+a)+b
    則?x4?x2+3=(?x2+1)(x2+a)+b=?x4?ax2+x2+a+b=?x4?(a?1)x2+(a+b)
    ∵對應(yīng)任意x,上述等式均成立,∴ ,∴a=2,b=1
    ∴ = =x2+2+
    這樣,分式 被拆分成了一個整式x2+2與一個分式 的和.
    解答:
    (1)將分式 拆分成一個整式與一個分式(分子為整數(shù))的和的形式.
    (2)試說明 的最小值為8.
    考點:分式的混合運算.
    專題:xkb1閱讀型.
    分析:(1)由分母為?x2+1,可設(shè)?x4?6x2+8=(?x2+1)(x2+a)+b,按照題意,求出a和b的值,即可把分式 拆分成一個整式與一個分式(分子為整數(shù))的和的形式;
    (2)對于x2+7+ 當(dāng)x=0時,這兩個式 子的和有最小值,最小值為8,于是求出 的最小值.
    解答:解:(1)由分母為? x2+1,可設(shè)?x4?6x2+8=(?x2+1)(x2+a)+b
    則?x4?6x2+8=(?x2+1)(x2+a)+b=?x4?ax2+x2+a+b=?x4?(a?1)x2+(a+b)
    ∵對應(yīng)任意x,上述等式均成立,
    ∴ ,
    ∴a=7,b=1,
    ∴ = = =x2+7+
    這樣,分式 被拆分成了一個整式x2+7與一個分式 的和.
    (2)由 =x2+7+ 知,
    對于x2+7+ 當(dāng)x=0時,這兩個式子的和有最小值,最小值為8,
    即 的最小值為8.
    點評:本題主要考查分式的混合運算等知識點,解答本題的關(guān)鍵是能熟練的理解題意,此題難度不是很大.
     
    21.(9分)(2013?珠海)如圖,在Rt△ABC中,∠C=90°,點P為AC邊上的一點,將線段AP繞點A順時針方向旋轉(zhuǎn)(點P對應(yīng)點P′),當(dāng)AP旋轉(zhuǎn)至AP′⊥AB時,點B、P、P′恰好在同一直線上,此時作P′E⊥AC于點E.
    (1)求證:∠CBP=∠ABP;
    (2)求證:AE=CP;
    (3)當(dāng) ,BP′=5 時,求線段AB的長.
    考點:全等三角形的判定與性質(zhì);角平分線的性質(zhì);勾股定理;相似三角形的判定與性質(zhì).
    專題:幾何綜合題.
    分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AP=AP′,根據(jù)等邊對等角的性質(zhì)可得∠APP′=∠AP′P,再根據(jù)等角的余角相等證明即可;
    (2)過點P作PD⊥AB于D,根據(jù)角平分線上的點到角的兩邊的距離相等可得CP=DP,然后求出∠PAD=∠AP′E,利用“角角邊”證明△APD和△P′AE全等,根據(jù)全等三角形對應(yīng)邊相等可得AE=DP,從而得證;
    (3)設(shè)CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EPP′相似,根據(jù)相似三角形對應(yīng)邊成比例列式求出P′A= AB,然后在Rt△ABP′中,利用勾股定理列式求解即可.
    解答:(1)證明:∵AP′是AP旋轉(zhuǎn)得到,
    ∴AP=AP′,
    ∴∠APP′=∠AP′P,
    ∵∠C=90°,AP′⊥AB,
    ∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,
    又∵∠BPC=∠APP′(對頂角相等),
    ∴∠CBP=∠ABP;
    (2)證明:如圖,過點P作PD⊥AB于D,
    ∵∠CBP=∠ABP,∠C=90°,
    ∴CP=DP,
    ∵P′E⊥AC,
    ∴∠EAP′+∠AP′E=90°,
    又∵∠PAD+∠EAP′=90°,
    ∴∠PAD=∠AP′E,
    在△APD和△P′AE中, ,
    ∴△APD≌△P′AE(AAS),
    ∴AE=DP,
    ∴AE=CP;
    (3)解:∵ = ,
    ∴設(shè)CP=3k,PE=2k,
    則AE=CP=3k,AP′=AP=3k+2k=5k,
    在Rt△AEP′中,P′E= =4k,
    ∵∠C=90°,P′E⊥AC,
    ∴∠CBP+∠BPC=90°,∠EP′P+∠P′PE=90°,
    ∵∠BPC=∠EPP′(對頂角相等),
    ∴∠CBP=∠P′PE,
    又∵∠BAP′=∠P′EP=90°,
    ∴△ABP′∽△EPP′,
    ∴ = ,
    即 = ,
    解得P′A= AB,
    在Rt△ABP′中,AB2+P′A2=BP′2,
    即AB2+ AB2=(5 )2,
    解得AB=10.
    點評:本題考查了全等三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),角平分線上的點到角的兩邊的距離相等的性質(zhì),勾股定理,相似三角形的判定與性質(zhì),(2)作輔助線構(gòu)造出過渡線段DP并得到全等三角形是解題的關(guān)鍵,(3)利用相似三角形對應(yīng)邊成比例求出P′A= AB是解題的關(guān)鍵.
     
    22.(9分)(2013?珠海)如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在y軸和x軸的正 半軸上,且長分別為m、4m(m>0),D為邊AB的中點,一拋物線l經(jīng)過點A、D及點M(?1,?1?m).
    (1)求拋物線l的 解析式(用含m的式子表示);
    (2)把△OAD沿直線O D折疊后點A落在點A′處,連接OA′并延長與線段BC的延長線交于點E,若拋物線l與線段CE相交,求實數(shù)m的取值范圍;
    (3)在滿足(2)的條件下,求出拋物線l頂點P到達最高位置時的坐標(biāo).
    考點:二次函數(shù)綜合題.
    分析 :(1)設(shè)拋物線l的解析式為y=ax2+bx+c,將A、D、M三點的坐標(biāo)代入,運用待定系數(shù)法即可求解;
    (2)設(shè)AD與x軸交于點M,過點A′作A′N⊥x軸于點N.根據(jù)軸對稱及平行線的性質(zhì)得出DM=OM=x,則A′M=2m?x,OA′=m,在Rt△OA′M中運用勾股定理求出x,得出A′點坐標(biāo),運用待定系數(shù)法得到直線OA′的解析式,確定E點坐標(biāo)(4m,?3m),根據(jù)拋物線l與線段CE相交,列出關(guān)于m的不等式組,求出解集即可;
    (3)根據(jù)二次函數(shù)的性質(zhì),結(jié)合(2)中求出的實數(shù)m的取值范圍,即可求解.
    解答:解:(1)設(shè)拋物線l的解析式為y=ax2+bx+c,
    將A(0,m),D(2m,m),M(?1,?1?m)三點的坐標(biāo)代入,
    得 ,解得 ,
    所以拋物線l的解析式為y=?x2+2mx+m;
    (2)設(shè)AD與x軸交于點M,過點A′作A′N⊥x軸于點N.
    ∵把△OAD沿直線OD折疊后點A落在點A′處,
    ∴△OAD≌△OA′D,OA=OA′=m,AD=A′D=2m,∠OAD=∠OA′D=90°,∠ADO=∠A′DO,
    ∵矩形OABC中,AD∥OC,
    ∴∠ADO=∠DOM,
    ∴∠A′DO=∠DOM,
    ∴DM=OM.
    設(shè)DM=OM=x,則A′M=2m?x,
    在Rt△OA′M中,∵OA′2+A′M2=OM2,
    ∴m2+(2m?x)2=x2,
    解得x= m.
    ∵S△OA′M= OM?A′N= OA′?A′M,
    ∴A′N= = m,
    ∴ON= = m,
    ∴A′點坐標(biāo)為( m,? m),
    易求直線OA′的解析式為y=? x,
    當(dāng)x=4m時,y=? ×4m=?3m,
    ∴E點坐標(biāo)為(4m,?3m).
    當(dāng)x=4m時,?x2+2mx+m=?(4m)2+2m?4m+m=?8m2+m,
    即拋物線l與直線CE的交點為(4m,?8m2+m),
    ∵拋物線l與線段CE相交,
    ∴?3m≤?8m2+m≤0,
    ∵m>0,
    ∴?3≤?8m+1≤0,
    解得 ≤m≤ ;
    (3)∵y=?x2+2mx+m=?(x?m)2+m2+m, ≤m≤ ,
    ∴當(dāng)x=m時,y有最大值m2+m,
    又∵m2+m=(m+ )2? ,
    ∴當(dāng) ≤m≤ 時,m2+m隨m的增大而增大,
    ∴當(dāng)m= 時,頂點P到達最高位置,m2+m=( )2+ = ,
    故此時拋物線l頂點P到達最高位置時的坐標(biāo)為( , ).
    點評:本題是二次函數(shù)的綜合題,其中涉及到運用待定系數(shù)法求一次函數(shù)、二次函數(shù)的解析式,軸對稱的性質(zhì),勾股定理,兩個函數(shù)交點坐標(biāo)的求法,二次函數(shù)、矩形的性質(zhì),解不等式組等知識,綜合性較強,有一定難度.(2)中求出A′點的坐標(biāo)是解題的關(guān)鍵.


    本文來自:逍遙右腦記憶 http://www.www.sxccs.com/chusan/72100.html

    相關(guān)閱讀:2013年中考數(shù)學(xué)幾何綜合試題匯編

    主站蜘蛛池模板: 精品国产91久久久久久久a| 真实国产精品vr专区| 久久精品国产精品亜洲毛片| 国产日韩精品欧美一区喷水| 久久99亚洲综合精品首页| 99久久精品费精品国产一区二区 | 久久se这里只有精品| 欧美精品v国产精品v日韩精品| 成人国产精品动漫欧美一区| 精品无码人妻一区二区三区 | 51视频国产精品一区二区| 亚欧无码精品无码有性视频| 一区二区三区精品国产欧美| 国产精品后入内射日本在线观看| 日韩精品无码免费视频| 亚洲精品人成在线观看| 成人精品视频一区二区三区 | 国产精品久久久久久| 亚洲精品二区国产综合野狼| 精品日韩在线视频一区二区三区| 夜色www国产精品资源站| 99久久这里只有精品| 午夜精品久久久久久久久| 亚洲精品国产va在线观看蜜芽| 99视频在线精品国自产拍亚瑟| 九九精品免视看国产成人| 97久久超碰国产精品旧版| 在线精品动漫一区二区无广告| 久久精品二区| 国产亚州精品女人久久久久久| 欧美精品高清在线观看| 国产精品91av| 99精品久久精品| 97久久综合精品久久久综合| 精品一区二区三区无码免费视频| 无码人妻精品一区二区三区99仓本| 亚洲精品成人在线| 欲帝精品福利视频导航| 亚洲AV永久纯肉无码精品动漫| 中文成人无码精品久久久不卡 | 亚洲视频精品在线|